UNI_Python/ha_03/loosen_janniclas_1540907_04.py

202 lines
6.0 KiB
Python
Raw Normal View History

2023-11-26 18:31:57 +01:00
<<<<<<< Updated upstream
2023-11-26 18:30:56 +01:00
# Jan-Niclas Loosen
# 1540907
def sieve_of_eratosthenes(limit):
primes = [True] * (limit + 1)
primes[0] = primes[1] = False # 0 and 1 are not primes
for num in range(2, int(limit ** 0.5) + 1): # only necessary to the square root of the limit
if primes[num]:
prime = num
for i in range(1,limit):
mult = prime * (i + 1)
if mult >= len(primes): # more loops are unnecessary
break
primes[mult] = False
return primes
def prime_factorization(n):
primes = sieve_of_eratosthenes(n)
factors = []
for i in range(2, n + 1):
if primes[i] and n % i == 0:
while n % i == 0:
factors.append(i)
n = n // i
return factors
# dialog for testing the functions
num = int(input("insert positive integer: "))
if num < 0 :
print("invalid input")
else:
print(prime_factorization(num))
2023-11-26 18:31:57 +01:00
=======
# Author: Jan-Niclas Loosen
# Matrikelnummer: 1540907
import math
import numpy as np
import matplotlib.pyplot as plt
# EXERCISE 1
class Rational:
numerator = 0
divisor = 1
def __str__(self):
return "%d/%d" % (self.numerator, self.divisor)
def __init__(self, a=0, b=1):
if isinstance(a, Rational):
self.numerator = a.numerator
self.divisor = a.divisor
self.shorten()
elif isinstance(a, int) and isinstance(b, int):
if b == 0:
print("Divisor cannot be zero!")
exit(1)
if b < 0:
b = -b
a = -a
self.numerator = a
self.divisor = b
self.shorten()
else:
print("Numerator and divisor must be integer.")
exit(1)
def gcd(self, a, b):
while b != 0:
(a, b) = (b, a % b)
return a
def lcm(self, a, b):
return abs(a * b) // self.gcd(a, b)
def lcd(self, other):
if not isinstance(other, Rational):
other = Rational(other)
return self.lcm(self.divisor, other.divisor)
def shorten(self):
d = self.gcd(self.numerator, self.divisor)
self.numerator = self.numerator // d
self.divisor = self.divisor // d
# addition
def __add__(self, other):
if not isinstance(other, Rational):
other = Rational(other)
lcm = self.lcm(self.divisor, other.divisor)
fac1 = lcm // self.divisor
fac2 = lcm // other.divisor
new_divisor = lcm
new_nominator = self.numerator * fac1 + other.numerator * fac2
return Rational(new_nominator, new_divisor)
def __radd__(self, other):
return self.__add__(other)
# subtraction
def __sub__(self, other):
if not isinstance(other, Rational):
other = Rational(other)
divisor_lcm = self.lcm(self.divisor, other.divisor)
new_nominator = (self.numerator * divisor_lcm / self.divisor) - (other.numerator * divisor_lcm / other.divisor)
return Rational(int(new_nominator), int(divisor_lcm))
def __rsub__(self, other):
if not isinstance(other, Rational):
other = Rational(other)
divisor_lcm = self.lcm(self.divisor, other.divisor)
new_nominator = (other.numerator * divisor_lcm / other.divisor) - (self.numerator * divisor_lcm / self.divisor)
return Rational(int(new_nominator), int(divisor_lcm))
# multiplication
def __mul__(self, other):
if isinstance(other, Rational):
return Rational(self.numerator * other.numerator, self.divisor * other.divisor)
else:
return Rational(self.numerator * other, self.divisor)
def __rmul__(self, other):
return self.__mul__(other)
# division
def __truediv__(self, other):
if not isinstance(other, Rational):
other = Rational(other)
new_numerator = self.numerator * other.divisor
new_divisor = self.divisor * other.numerator
return Rational(new_numerator, new_divisor)
def __rtruediv__(self, other):
if not isinstance(other, Rational):
other = Rational(other)
new_numerator = self.divisor * other.numerator
new_divisor = self.numerator * other.divisor
return Rational(new_numerator, new_divisor)
def __lt__(self, other):
divisor_lcm = self.lcd(other)
return (self.numerator * divisor_lcm / self.divisor) < (other.numerator * divisor_lcm / other.divisor)
def __gt__(self, other):
divisor_lcm = self.lcd(other)
return (self.numerator * divisor_lcm / self.divisor) > (other.numerator * divisor_lcm / other.divisor)
def __le__(self, other):
divisor_lcm = self.lcd(other)
return (self.numerator * divisor_lcm / self.divisor) <= (other.numerator * divisor_lcm / other.divisor)
def __ge__(self, other):
divisor_lcm = self.lcd(other)
return (self.numerator * divisor_lcm / self.divisor) >= (other.numerator * divisor_lcm / other.divisor)
def __eq__(self, other):
if not isinstance(other, Rational):
other = Rational(other)
# all constructed Rationals are already shortened
return self.divisor == other.divisor and self.numerator == other.numerator
def __ne__(self, other):
return not self.__eq__(other)
# EXERCISE 2
def heron(a, x, run):
for i in range(run):
x = x - (x ** 2 - a) / (2 * x)
return x
# Generate x values
x_values = [x for x in range(10)]
# Calculate the difference between heron and sqrt functions
a = 2
b = 1.9
x0 = 1.5
y_values_a = [abs(heron(a, x0, run) - np.sqrt(a)) for run in x_values]
y_values_b = [abs(heron(b, x0, run) - np.sqrt(b)) for run in x_values]
# Plot the difference
plt.plot(x_values, y_values_a, label='a = 2, x0 = 1.5', color="blue")
plt.plot(x_values, y_values_b, label='b = 0.5, x0 = 1.5', color="red")
# Add labels and a legend
plt.xlabel('Iterations')
plt.ylabel('Difference')
plt.legend()
# Show the plot
plt.show()
>>>>>>> Stashed changes