import random from io import BytesIO import numpy as np import multiprocessing import requests from mpi4py import MPI from PIL import Image def count_randomized_hits(iterations): counter = 0 for i in range(iterations): x = random.uniform(0, 1) y = random.uniform(0, 1) if ((x ** 2) + (y ** 2)) ** (1 / 2) <= 1: counter += 1 return counter FLAG_default = 0 FLAG_threaded = 1 FLAG_network = 2 def monte_carlo_methode(n, mode=0): if mode == 1: # Multithreading mode num_threads = 16 iterations_per_thread = n // num_threads with multiprocessing.Pool(num_threads) as pool: hits = pool.map(count_randomized_hits, [iterations_per_thread] * num_threads) hit = sum(hits) elif mode == 2: # MPI parallel mode comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() local_hit = count_randomized_hits(n // size) hit = comm.reduce(local_hit, op=MPI.SUM, root=0) else: # Default mode hit = count_randomized_hits(n) pi_approx = (hit / n) * 4 pi_diff = abs(np.pi - pi_approx) return pi_approx, pi_diff def uniform_kernel(n): if n % 2 == 0: print("Size needs to be odd") exit(1) K = 1 / n / n * np.ones([n, n]) return K def gauss_kernel(s): n = 3 * s pos = np.arange(-n, n + 1) x = np.meshgrid(pos, pos) K = 1.0 / (2.0 * np.pi * s * s) * np.exp(-(x[0] ** 2 + x[1] ** 2) / (2.0 * s * s)) K = K / sum(sum(K)) return K FLAG_gauss = 0 FLAG_uniform = 1 def process_image_part(data_part, kernel, padding): y_part_size, x_part_size, _ = data_part.shape data_part_new = np.zeros((data_part.shape[0] - padding[0], data_part.shape[1] - padding[1], 3)) pad_y, pad_x = padding for i in range(pad_y, y_part_size - pad_y): for j in range(pad_x, x_part_size - pad_x): for k in range(3): new_value = 0.0 for ii in range(kernel.shape[0]): for jj in range(kernel.shape[1]): iii = ii - pad_y jjj = jj - pad_x new_value += kernel[ii, jj] * data_part[i + iii, j + jjj, k] data_part_new[i - pad_y, j - pad_x, k] = new_value return data_part_new def split_array(arr, n, overlap): sub_array_length = (len(arr) + (n - 1) * overlap) // n sub_arrays = [arr[i * (sub_array_length - overlap): i * (sub_array_length - overlap) + sub_array_length] for i in range(n)] return np.array(sub_arrays) def process_image(img, func=0, mode=0): if isinstance(img, str): img = Image.open(img) if img.mode == "P": img = img.convert(mode="RGB") data = np.asarray(img, dtype=np.float64) / 255.0 if func == 1: kernel = uniform_kernel(7) else: kernel = gauss_kernel(3) padding = [(kernel.shape[0] // 2), kernel.shape[1] // 2] if mode == 1: # Multithreading mode num_threads = 16 data_parts = split_array(data, num_threads, padding[0]) with multiprocessing.Pool(num_threads) as pool: data_new_parts = pool.starmap(process_image_part, zip(data_parts, [kernel]*num_threads, [padding]*num_threads)) data_new = np.concatenate(data_new_parts, axis=0) elif mode == 2: # MPI parallel mode comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() data_part = np.array_split(data, size, axis=0)[rank] data_new_part = process_image_part(data_part, kernel, padding) data_new_parts = comm.gather(data_new_part, root=0) if rank == 0: data_new = np.concatenate(data_new_parts, axis=0) else: data_new = None data_new = comm.bcast(data_new, root=0) else: # Default mode data_new = process_image_part(data, kernel, padding) data_new = data_new * 255.0 data_new = np.uint8(data_new) return Image.fromarray(data_new, mode="RGB") if __name__ == '__main__': print(monte_carlo_methode(1000, FLAG_default)) print(monte_carlo_methode(1000, FLAG_threaded)) print(monte_carlo_methode(1000, FLAG_network)) url = "https://i.wfcdn.de/teaser/660/27020.jpg" response = requests.get(url) if response.status_code == 200: image = Image.open(BytesIO(response.content)) image = process_image(image, FLAG_uniform, FLAG_threaded) image.show()