UNI_Python/ha_08/loosen_janniclas_1540907_09.py
2024-01-07 14:18:15 +01:00

186 lines
5.8 KiB
Python

import colorsys
import plotly.graph_objects as go
from PIL import Image
import numpy as np
from matplotlib import pyplot as plt
import time
def apply_convolution_operator(operator, image):
if isinstance(image, str):
image = Image.open(image)
if isinstance(image, Image.Image):
x_pixel, y_pixel = image.size
# turn into editable list of colors
data = np.asarray(image, dtype=np.uint8)
# storage for the convoluted image
data_new = np.zeros([y_pixel, x_pixel, 3], dtype=np.uint8)
for i in range(1, y_pixel - 1):
for j in range(1, x_pixel - 1):
for k in range(3):
new_value = (
operator[0, 0] * data[i - 1, j - 1, k] +
operator[0, 1] * data[i - 1, j, k] +
operator[0, 2] * data[i - 1, j + 1, k] +
operator[1, 0] * data[i, j - 1, k] +
operator[1, 1] * data[i, j, k] +
operator[1, 2] * data[i, j + 1, k] +
operator[2, 0] * data[i + 1, j - 1, k] +
operator[2, 1] * data[i + 1, j, k] +
operator[2, 2] * data[i + 1, j + 1, k]
)
new_value = max(0, min(new_value, 255))
data_new[i, j, k] = new_value
return Image.fromarray(data_new)
else:
raise TypeError("Not a valid instance of Image.Image")
g1 = np.array([
[0, 1, 0],
[0, 0, 0],
[0, -1, 0]
])
g2 = np.array([
[1, 0, 0],
[0, 0, 0],
[0, 0, -1]
])
g3 = np.array([
[0, 0, 0],
[1, 0, -1],
[0, 0, 0]
])
g4 = np.array([
[0, 0, 1],
[0, 0, 0],
[-1, 0, 0]
])
identity = np.array([
[0, 0, 0],
[0, 1, 0],
[0, 0, 0]
])
laplace = np.array([
[0, 1, 0],
[1, -4, 1],
[0, 1, 0]
])
"""
url = "https://cdn.prod.www.spiegel.de/images/9f9be1b3-ac0e-49f9-acbd-a809a102f9b6_w960_r1.778_fpx39_fpy30.jpg"
response = requests.get(url)
if response.status_code == 200:
# image = Image.open(BytesIO(response.content))
image = Image.open("next_generation.jpg")
operators = [laplace]
edited_image = image
for operator in operators:
edited_image = apply_convolution_operator(operator, edited_image)
edited_image = edited_image.convert("RGB") # Convert to RGB mode
edited_image.show()
edited_image.save("edited.jpg")
else:
print(f"Failed to download image. Status code: {response.status_code}")
"""
class Heatmap_Simulator:
k = 1
h = 2
delta_f = 0.005
cookie_size = 0.5
def __init__(self, y_size=28, x_size=28, tmp_min=0, tmp_max=1):
init_heatmap = np.zeros((y_size, x_size))
self.x_size = x_size
self.y_size = y_size
self.tmp_min = tmp_min
self.tmp_max = tmp_max
size = self.cookie_size / 2
for y in range(int(y_size * (0.5 - size)), int(y_size * (0.5 + size))):
for x in range(int(x_size * (0.5 - size)), int(x_size * (0.5 + size))):
init_heatmap[y][x] = 1
self.heatmap = init_heatmap
def simulate(self, cycles=1):
for c in range(cycles):
new_heatmap = np.zeros((self.y_size, self.x_size))
for y in range(self.y_size):
for x in range(self.x_size):
u = self.heatmap[y, x]
value = u + self.delta_f * (self.k / (1 ** 2)) * self._consider_convolution(x, y)
value = max(self.tmp_min, min(self.tmp_max, value))
new_heatmap[y][x] = value
self.heatmap = new_heatmap
def _consider_convolution(self, x, y):
top = self.heatmap[y - 1, x] if y > 0 else 0
bottom = self.heatmap[y + 1, x] if y < self.heatmap.shape[0] - 1 else 0
left = self.heatmap[y, x - 1] if x > 0 else 0
right = self.heatmap[y, x + 1] if x < self.heatmap.shape[1] - 1 else 0
center = self.heatmap[y, x]
return top + bottom + left + right + center * (-4)
def export(self):
if self.heatmap is not None:
return Heatmap_Image(self.heatmap, 0, 1)
else:
AttributeError("Heatmap is not initialized.")
class Visual_Heatmap_Simulator(Heatmap_Simulator):
def __init__(self, y_size=28, x_size=28, tmp_min=0, tmp_max=1, delay=0.5):
super().__init__(y_size, x_size, tmp_min, tmp_max)
self.delay = delay
def simulate_visual(self, cycles=100, skip=5):
for c in range(cycles):
if c != 0:
self.simulate(1)
if c % skip == 0:
self._update_plot()
print(f"Figure updated: {c}.")
def _update_plot(self):
plt.imshow(self.heatmap, cmap='viridis', interpolation='nearest')
plt.draw()
plt.pause(self.delay)
simulator = Visual_Heatmap_Simulator(28, 28, -0.5, 1)
simulator.simulate_visual(10000, 50)
class Heatmap_Image:
def __init__(self, heatmap, min_val, max_val):
self.min_val = min_val
self.max_val = max_val
x_size, y_size = heatmap.shape
colormap = np.zeros((y_size, x_size, 3), dtype=np.uint8)
for y in range(y_size):
for x in range(x_size):
colormap[y][x] = self._val_to_color(heatmap[y][x])
self.image = Image.fromarray(colormap, 'RGB')
def _val_to_color(self, value):
normalized_value = (value - self.min_val) / (self.max_val - self.min_val)
hsv_color = (0.66 - 0.66 * normalized_value, 1.0, 1.0) # Blue to Red
rgb_color = colorsys.hsv_to_rgb(*hsv_color)
scaled_rgb_color = tuple(int(c * 255) for c in rgb_color)
return scaled_rgb_color
def show(self):
self.image.show()
def save(self, file):
self.image.save(file)