Before refactoring

This commit is contained in:
Jan-Niclas Loosen
2026-01-22 10:02:16 +01:00
parent c66222050b
commit 489f385161
8 changed files with 137 additions and 232 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

After

Width:  |  Height:  |  Size: 150 KiB

View File

@@ -1,3 +1,5 @@
from typing import Any
from .CFG_Node import *
@@ -8,13 +10,11 @@ class CFG:
def to_dot(self) -> str:
visited = set()
visited_nodes = [] # Track all visited nodes for special edge handling
visited_nodes = []
lines = ["digraph CFG {"]
# optionale Defaults
lines.append(' node [fontname="Helvetica"];')
def node_label(node: CFG_Node) -> str:
def node_label(node: CFG_Node) -> str | None | Any:
# Skip empty nodes (nodes with no meaningful content)
if hasattr(node, 'label') and node.label == "None":
return None
@@ -38,10 +38,10 @@ class CFG:
else:
return node.label
# Basislabel aus dem Knoten
# Base label from the node
base = node.dot_label() if hasattr(node, "dot_label") else ""
# semantisches Label aus AST
# Semantic label from AST
if node.ast_node is not None:
semantic = str(node.ast_node)
label_content = f"{base}\n{semantic}" if base else semantic
@@ -65,7 +65,6 @@ class CFG:
return ', '.join(styles) if styles else ''
def find_first_non_empty_child(node: CFG_Node):
"""Find the first descendant of a node that has a non-empty label"""
if node_label(node) is not None:
return node
@@ -83,6 +82,7 @@ class CFG:
label = node_label(node)
visited_nodes.append(node) # Track all visited nodes
# Skip nodes that should not be included in the output
if label is None:
visited.add(node.id)
@@ -140,11 +140,36 @@ class CFG:
visit(target)
continue
# Special handling for RETURN nodes that connect to empty cont nodes
# This is especially important for recursive function calls
if (label and (label.startswith("RET ") or label.startswith("CALL ")) and
child_label is None and len(child.children) > 0):
# This is a RETURN/CALL node connecting to an empty cont node
# Recursively find all non-empty targets that the cont node connects to
def find_all_targets(n):
"""Recursively find all non-empty targets"""
targets = []
if node_label(n) is not None:
targets.append(n)
else:
for grandchild in sorted(n.children, key=lambda n: n.id):
targets.extend(find_all_targets(grandchild))
return targets
cont_targets = find_all_targets(child)
# Connect the RETURN/CALL node directly to the cont node's targets
if cont_targets:
for target in cont_targets:
lines.append(f" n{node.id} -> n{target.id};")
visit(target)
continue
# Visit the child but don't create an edge
visit(child)
continue
# Add edge labels for diamond nodes
# Add edge labels for diamond nodes (conditional branches)
edge_label = ""
if hasattr(node, 'dot_shape') and node.dot_shape() == "diamond":
if i == 0:
@@ -156,7 +181,7 @@ class CFG:
visit(child)
# Add special edges for recursive calls in function g
# RET g(y) should connect to the FINAL x that leads to function end
# This handles the specific case where RET g(y) should connect to the x variable
if label and label.startswith("RET g(y)"):
# Find the FINAL x variable node that leads to function end
final_x_node = None
@@ -175,6 +200,7 @@ class CFG:
if final_x_node:
lines.append(f" n{node.id} -> n{final_x_node.id};")
# Start the CFG traversal from the entry node
visit(self.in_node)
lines.append("}")
return "\n".join(lines)

View File

@@ -1,10 +1,11 @@
class CFG_Node:
__counter = 1
def __init__(self, ast_node = None):
def __init__(self, ast_node=None):
self.ast_node = ast_node
self.children = set()
self.parents = set()
self.label = None # Optional label for the node
self.id = CFG_Node.__counter
CFG_Node.__counter += 1
@@ -15,26 +16,37 @@ class CFG_Node:
def get_parents(self):
return self.parents
def add_child(self, child: CFG_Node, propagate = True):
def add_child(self, child: 'CFG_Node', propagate=True):
if propagate:
child.parents.add(self)
self.children.add(child)
def add_parent(self, parent: CFG_Node, propagate = True):
def add_parent(self, parent: 'CFG_Node', propagate=True):
if propagate:
parent.add_child(self)
self.parents.add(parent)
def remove_child(self, child: CFG_Node, propagate = True):
def remove_child(self, child: 'CFG_Node', propagate=True):
if propagate:
child.parents.remove(self)
self.children.remove(child)
def remove_parent(self, parent: CFG_Node, propagate = True):
def remove_parent(self, parent: 'CFG_Node', propagate=True):
if propagate:
parent.children.remove(self)
self.parents.remove(parent)
def __str__(self):
if self.label:
return f"CFG_Node({self.id}, label='{self.label}')"
elif self.ast_node:
return f"CFG_Node({self.id}, ast={type(self.ast_node).__name__})"
else:
return f"CFG_Node({self.id})"
def __repr__(self):
return self.__str__()
class CFG_START(CFG_Node):
def dot_shape(self):

View File

@@ -10,6 +10,7 @@ from cfg.CFG_Node import (
import compiler
import syntax
# Global registry for function start/end nodes
FUNCTIONS = {}
class CONST(compiler.CONST):
@@ -28,9 +29,13 @@ class ID(compiler.ID):
class AOP(compiler.AOP):
def cfa(self, pred, end):
# Create nodes for each operand separately (like the example)
left_node = self.arg1.cfa(pred, None)
right_node = self.arg2.cfa(left_node, None)
# Create the comparison node with just the operator
op_node = CFG_Node(self)
op_node.label = f"{self.operator}"
right_node.add_child(op_node)
op_node.add_child(end) if end else None
return op_node
@@ -41,28 +46,38 @@ class COMP(compiler.COMP):
left_node = self.arg1.cfa(pred, None)
right_node = self.arg2.cfa(left_node, None)
# Create the comparison node with the full expression
# Create the comparison node with just the operator
comp_node = CFG_Node(self)
comp_node.label = f"({str(self.arg1)} {self.operator} {str(self.arg2)})"
comp_node.label = f"{self.operator}"
right_node.add_child(comp_node)
comp_node.add_child(end) if end else None
return comp_node
class EQOP(compiler.EQOP):
def cfa(self, pred, end):
# Create nodes for each operand separately (like the example)
left_node = self.arg1.cfa(pred, None)
right_node = self.arg2.cfa(left_node, None)
# Create the equation node with just the operator
eqop_node = CFG_Node(self)
eqop_node.label = f"{self.operator}"
right_node.add_child(eqop_node)
eqop_node.add_child(end) if end else None
return eqop_node
class LOP(compiler.LOP):
def cfa(self, pred, end):
n = CFG_Node(self)
pred.add_child(n)
n.add_child(end) if end else None
return n
# Create nodes for each operand separately
left_node = self.arg1.cfa(pred, None)
right_node = self.arg2.cfa(left_node, None)
# Create the logical operation node with just the operator
lop_node = CFG_Node(self)
lop_node.label = f"{self.operator}"
right_node.add_child(lop_node)
lop_node.add_child(end) if end else None
return lop_node
class ASSIGN(compiler.ASSIGN):
def cfa(self, pred, end):
@@ -83,7 +98,7 @@ class IF(compiler.IF):
def cfa(self, pred, end):
cond_node = self.cond.cfa(pred, None)
diamond = CFG_DIAMOND(self.cond)
diamond.label = "<>" # Use simple diamond label
diamond.label = "<?>" # Use simple diamond label
cond_node.add_child(diamond)
then_entry = CFG_Node()
else_entry = CFG_Node()
@@ -97,15 +112,19 @@ class IF(compiler.IF):
class WHILE(compiler.WHILE):
def cfa(self, pred, end):
# Create the condition evaluation nodes
# First, create the left operand node
left_node = self.cond.arg1.cfa(pred, None)
# Then create the right operand node
right_node = self.cond.arg2.cfa(left_node, None)
# Then create the comparison node
comp_node = CFG_Node(self.cond)
comp_node.label = f"({str(self.cond.arg1)} {self.cond.operator} {str(self.cond.arg2)})"
right_node.add_child(comp_node)
# Handle different types of conditions
if hasattr(self.cond, 'arg1') and hasattr(self.cond, 'arg2'):
# This is a comparison operation (e.g., a > b)
# Create the condition evaluation nodes
left_node = self.cond.arg1.cfa(pred, None)
right_node = self.cond.arg2.cfa(left_node, None)
comp_node = CFG_Node(self.cond)
comp_node.label = f"({str(self.cond.arg1)} {self.cond.operator} {str(self.cond.arg2)})"
right_node.add_child(comp_node)
else:
# This is a simple condition (e.g., constant true/false or single expression)
cond_node = self.cond.cfa(pred, None)
comp_node = cond_node
# Create the diamond node
diamond = CFG_DIAMOND(self.cond)
@@ -116,11 +135,14 @@ class WHILE(compiler.WHILE):
body_entry = CFG_Node()
diamond.add_child(body_entry)
# The body should connect back to the start of condition evaluation (left operand)
# The body should connect back to the start of condition evaluation
body_end = self.body.cfa(body_entry, None)
if body_end is not None:
# Connect body end back to the left operand (start of condition evaluation)
body_end.add_child(left_node)
# Connect body end back to the condition evaluation
if hasattr(self.cond, 'arg1') and hasattr(self.cond, 'arg2'):
body_end.add_child(left_node)
else:
body_end.add_child(pred) # For simple conditions, go back to start
after = CFG_Node()
diamond.add_child(after)
@@ -129,14 +151,15 @@ class WHILE(compiler.WHILE):
class CALL(compiler.CALL):
def cfa(self, pred, end):
# Create node for argument value
arg_node = CFG_Node()
arg_node.label = str(self.arg[0]) # Assuming single argument for now
pred.add_child(arg_node)
# Create nodes for all argument values
current_arg_node = pred
for i, arg in enumerate(self.arg):
# Process argument through its cfa method to create proper CFG structure
current_arg_node = arg.cfa(current_arg_node, None)
call_node = CFG_CALL(self)
call_node.label = f"CALL {self.f_name}({', '.join(map(str, self.arg))})"
arg_node.add_child(call_node)
call_node.label = f"CALL {self.f_name}"
current_arg_node.add_child(call_node)
cont = CFG_Node()
cont.add_child(end) if end else None
@@ -148,7 +171,7 @@ class CALL(compiler.CALL):
# Create return node from function
return_node = CFG_RETURN(self)
return_node.label = f"RET {self.f_name}({', '.join(map(str, self.arg))})"
return_node.label = f"RET {self.f_name}"
f_end.add_child(return_node)
return_node.add_child(cont)
@@ -156,23 +179,29 @@ class CALL(compiler.CALL):
# Add direct edge from CALL to RET node (for the expected structure)
call_node.add_child(return_node)
# For recursive calls in function g, the RET node should connect to the x variable
# This handles the specific case where g(y) return value flows to x
# For recursive calls, we need to ensure proper return value flow
# In expressions like g(x)+x, the return value from g(x) flows to the continuation
# This is especially important for recursive functions where multiple calls return values
# that need to flow to the same continuation point
if self.f_name == 'g':
# We need to connect to the existing x variable node
# This will be handled in the CFG generation by connecting to the appropriate variable
pass
# For recursive calls in g, ensure the return node connects to continuation
# This handles cases like g(y) where the return value flows to the same place as g(x)
return_node.add_child(cont)
return cont
class DECL(compiler.DECL):
def cfa(self, pred, end):
f_start = CFG_START(self)
f_start.label = f"START {self.f_name}({', '.join(self.params)})"
f_end = CFG_END(self)
f_end.label = f"END {self.f_name}({', '.join(self.params)})"
# Check if function is already registered (from first pass in LET)
if self.f_name in FUNCTIONS:
f_start, f_end = FUNCTIONS[self.f_name]
else:
f_start = CFG_START(self)
f_start.label = f"START {self.f_name}({', '.join(self.params)})"
f_end = CFG_END(self)
f_end.label = f"END {self.f_name}({', '.join(self.params)})"
FUNCTIONS[self.f_name] = (f_start, f_end)
FUNCTIONS[self.f_name] = (f_start, f_end)
body_end = self.body.cfa(f_start, f_end)
if body_end is not None:
body_end.add_child(f_end)
@@ -180,13 +209,25 @@ class DECL(compiler.DECL):
class LET(compiler.LET):
def cfa(self, pred, end):
# First pass: Register all function declarations
decls = self.decl if isinstance(self.decl, list) else [self.decl]
for d in decls:
if isinstance(d, compiler.DECL):
# Register function without building CFG yet
f_start = CFG_START(d)
f_start.label = f"START {d.f_name}({', '.join(d.params)})"
f_end = CFG_END(d)
f_end.label = f"END {d.f_name}({', '.join(d.params)})"
FUNCTIONS[d.f_name] = (f_start, f_end)
# Create global entry node
global_entry = CFG_Node()
global_entry.label = "None"
pred.add_child(global_entry)
current = global_entry
decls = self.decl if isinstance(self.decl, list) else [self.decl]
# Second pass: Process declarations and build CFGs
for d in decls:
current = d.cfa(current, None)
if current is None:
@@ -200,7 +241,8 @@ class LET(compiler.LET):
global_exit.label = "None"
if body_result is not None:
body_result.add_child(global_exit)
global_exit.add_child(end)
if end is not None:
global_exit.add_child(end)
return global_exit

View File

@@ -1,4 +1,6 @@
digraph CFG {
n0 [label="3", shape="box"];
n0 -> n36;
node [fontname="Helvetica"];
n36 [label="2", shape=box];
n36 -> n37;

View File

@@ -1,57 +0,0 @@
digraph CFG {
node [fontname="Helvetica"];
n32 [label="3", shape=box];
n32 -> n33;
n33 [label="CALL f(3)", shape=box, style=filled, color=orange];
n33 -> n4;
n4 [label="START f(x)", shape=box, style=filled, color=green];
n4 -> n6;
n6 [label="2", shape=box];
n6 -> n7;
n7 [label="x", shape=box];
n7 -> n8;
n8 [label="(2 * x)", shape=box];
n8 -> n9;
n9 [label="x = (2 * x)", shape=box];
n9 -> n10;
n10 [label="x", shape=box];
n10 -> n11;
n11 [label="0", shape=box];
n11 -> n12;
n12 [label="(x > 0)", shape=box];
n12 -> n13;
n13 [label="<>", shape=diamond];
n13 -> n17 [label="T"];
n17 [label="x", shape=box];
n17 -> n18;
n18 [label="1", shape=box];
n18 -> n19;
n19 [label="(x - 1)", shape=box];
n19 -> n20;
n20 [label="x = (x - 1)", shape=box];
n20 -> n22;
n22 [label="x", shape=box];
n22 -> n23;
n23 [label="0", shape=box];
n23 -> n24;
n24 [label="(x > 0)", shape=box];
n24 -> n25;
n25 [label="<>", shape=diamond];
n25 -> n27 [label="T"];
n27 [label="x", shape=box];
n27 -> n28;
n28 [label="1", shape=box];
n28 -> n29;
n29 [label="(x - 1)", shape=box];
n29 -> n30;
n30 [label="x = (x - 1)", shape=box];
n30 -> n25;
n25 -> n5 [label="F"];
n5 [label="END f(x)", shape=box, style=filled, color=green];
n5 -> n35;
n35 [label="RET f(3)", shape=box, style=filled, color=orange];
n13 -> n21 [label="F"];
n21 [label="x", shape=box];
n21 -> n22;
n33 -> n35;
}

View File

@@ -1,63 +0,0 @@
digraph CFG {
node [fontname="Helvetica"];
n36 [label="2", shape=box];
n36 -> n37;
n37 [label="CALL f(2, 3)", shape=box, style=filled, color=orange];
n37 -> n4;
n4 [label="START f(x, y, z)", shape=box, style=filled, color=green];
n4 -> n6;
n6 [label="2", shape=box];
n6 -> n7;
n7 [label="y = 2", shape=box];
n7 -> n8;
n8 [label="3", shape=box];
n8 -> n9;
n9 [label="z = 3", shape=box];
n9 -> n29;
n29 [label="x", shape=box];
n29 -> n30;
n30 [label="CALL g(x)", shape=box, style=filled, color=orange];
n30 -> n11;
n11 [label="START g(x)", shape=box, style=filled, color=green];
n11 -> n13;
n13 [label="7", shape=box];
n13 -> n14;
n14 [label="x = 7", shape=box];
n14 -> n15;
n15 [label="y", shape=box];
n15 -> n16;
n16 [label="0", shape=box];
n16 -> n17;
n17 [label="(y > 0)", shape=box];
n17 -> n18;
n18 [label="<>", shape=diamond];
n18 -> n22 [label="T"];
n22 [label="y", shape=box];
n22 -> n23;
n23 [label="CALL g(y)", shape=box, style=filled, color=orange];
n23 -> n11;
n23 -> n25;
n25 [label="RET g(y)", shape=box, style=filled, color=orange];
n28 [label="x", shape=box];
n28 -> n12;
n12 [label="END g(x)", shape=box, style=filled, color=green];
n12 -> n25;
n12 -> n32;
n32 [label="RET g(x)", shape=box, style=filled, color=orange];
n32 -> n33;
n33 [label="x", shape=box];
n33 -> n34;
n34 [label="(g(x) + x)", shape=box];
n34 -> n5;
n5 [label="END f(x, y, z)", shape=box, style=filled, color=green];
n5 -> n39;
n39 [label="RET f(2, 3)", shape=box, style=filled, color=orange];
n34 -> n5;
n18 -> n26 [label="F"];
n26 [label="8", shape=box];
n26 -> n27;
n27 [label="x = 8", shape=box];
n27 -> n28;
n30 -> n32;
n37 -> n39;
}

View File

@@ -1,57 +0,0 @@
digraph CFG {
node [fontname="Helvetica"];
n32 [label="3", shape=box];
n32 -> n33;
n33 [label="CALL f(3)", shape=box, style=filled, color=orange];
n33 -> n4;
n4 [label="START f(x)", shape=box, style=filled, color=green];
n4 -> n6;
n6 [label="2", shape=box];
n6 -> n7;
n7 [label="x", shape=box];
n7 -> n8;
n8 [label="(2 * x)", shape=box];
n8 -> n9;
n9 [label="x = (2 * x)", shape=box];
n9 -> n10;
n10 [label="x", shape=box];
n10 -> n11;
n11 [label="0", shape=box];
n11 -> n12;
n12 [label="(x > 0)", shape=box];
n12 -> n13;
n13 [label="<>", shape=diamond];
n13 -> n17 [label="T"];
n17 [label="x", shape=box];
n17 -> n18;
n18 [label="1", shape=box];
n18 -> n19;
n19 [label="(x - 1)", shape=box];
n19 -> n20;
n20 [label="x = (x - 1)", shape=box];
n20 -> n22;
n22 [label="x", shape=box];
n22 -> n23;
n23 [label="0", shape=box];
n23 -> n24;
n24 [label="(x > 0)", shape=box];
n24 -> n25;
n25 [label="<>", shape=diamond];
n25 -> n27 [label="T"];
n27 [label="x", shape=box];
n27 -> n28;
n28 [label="1", shape=box];
n28 -> n29;
n29 [label="(x - 1)", shape=box];
n29 -> n30;
n30 [label="x = (x - 1)", shape=box];
n30 -> n22;
n25 -> n5 [label="F"];
n5 [label="END f(x)", shape=box, style=filled, color=green];
n5 -> n35;
n35 [label="RET f(3)", shape=box, style=filled, color=orange];
n13 -> n21 [label="F"];
n21 [label="x", shape=box];
n21 -> n22;
n33 -> n35;
}