continue homework

This commit is contained in:
Jan-Niclas Loosen 2025-01-11 00:48:27 +01:00
parent 38709f0de0
commit bd30888c3f
16 changed files with 198296 additions and 207229 deletions

8
boa/analysis/.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

View File

@ -0,0 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/.venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.13 (analysis)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@ -0,0 +1,12 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="N802" />
</list>
</option>
</inspection_tool>
</profile>
</component>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.13 (analysis)" />
</component>
</project>

View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/analysis.iml" filepath="$PROJECT_DIR$/.idea/analysis.iml" />
</modules>
</component>
</project>

View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/../.." vcs="Git" />
</component>
</project>

129
boa/analysis/aufgabe_02.py Normal file
View File

@ -0,0 +1,129 @@
import math
import time
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
JAVA_INPUT = './data/try_Java_Jan_2022_last_revision.boa.output.txt'
PYTHON_INPUT = './data/try_Python_Feb_2022_last_revision.boa.output.txt'
SHOW_PLOTS = False
SEED = 3
def read_sample(file_path, title='', sample_size=0, show=True):
# filename kann auch ein URL sein: "https://..../example.csv"
df = pd.read_csv(file_path,
sep=r"\[|\]\s=",
engine="python",
index_col=False,
#nrows=25, # zum Testen nur kleine Anzahl einlesen
skipinitialspace=True,
names=['Variable', 'Project', 'Ratio'],
usecols=['Project', 'Ratio']
)
if sample_size > 0:
# feste seed zum besseren Vergleich
df = df.sample(sample_size, random_state=int(SEED))
if show:
df.info()
df.boxplot(column=['Ratio'], grid=False)
df.hist(column=['Ratio'], grid=False)
plt.title(title)
plt.show()
return df
def cohen_d(x, y):
# Mittelwerte der Gruppen
mean_x, mean_y = x.mean(), y.mean()
mean_diff = mean_x - mean_y
# Varianzen der Gruppen
var_x, var_y = x.var(ddof=1), y.var(ddof=1)
# Stichprobengrößen der Gruppen
size_x, size_y = len(x), len(y)
# Gepoolte Varianz und Standardabweichung
pool_var = ((size_x - 1) * var_x + (size_y - 1) * var_y) / (size_x + size_y - 2)
pool_var = math.sqrt(pool_var)
# Cohen's d
d_val = mean_diff / pool_var
return d_val
def find_barrier(x_sample_path, y_sample_path, alpha=0.1, lower_limit=2, upper_limit=10000):
left = lower_limit
right = upper_limit
barrier_size = -1
# Binäre Suche nach der Schranke
while left <= right:
mid = (left + right) // 2
x_sample = read_sample(x_sample_path, sample_size=mid, show=False)["Ratio"]
y_sample = read_sample(y_sample_path, sample_size=mid, show=False)["Ratio"]
stat, p_value = stats.mannwhitneyu(x_sample, y_sample, alternative="two-sided")
if p_value >= alpha:
# Vermerke die aktuelle untere Schranke
barrier_size = mid
# Kein signifikantes Ergebnis gefunden, probiere größere Probe
left = mid + 1
else:
# Signifikantes Ergebnis gefunden, probiere kleinere Probe
right = mid - 1
x_sample = read_sample(x_sample_path, sample_size=barrier_size + 1, show=False)["Ratio"]
y_sample = read_sample(y_sample_path, sample_size=barrier_size + 1, show=False)["Ratio"]
stat, p_value = stats.mannwhitneyu(x_sample, y_sample, alternative="two-sided")
print(f"\nSind die Unterschiede bei {barrier_size + 1} Proben signifikant? {str(p_value < alpha)}")
x_sample = read_sample(x_sample_path, sample_size=barrier_size, show=False)["Ratio"]
y_sample = read_sample(y_sample_path, sample_size=barrier_size, show=False)["Ratio"]
stat, p_value = stats.mannwhitneyu(x_sample, y_sample, alternative="two-sided")
print(f"Sind die Unterschiede bei {barrier_size} Proben signifikant? {str(p_value < alpha)}")
return barrier_size
def main():
plt.close('all')
print('Statistische Berechnungen zu Häufigkeiten (Übung 5)')
print('\nEinlesen der ersten Stichprobe (Python)')
python_sample = read_sample(PYTHON_INPUT, sample_size=1000, show=SHOW_PLOTS, title="Python")
print('Mean:' + str(python_sample['Ratio'].mean()))
print('Variance:' + str(python_sample['Ratio'].var()))
print('\nEinlesen der zweiten Stichprobe (Java)')
java_sample = read_sample(JAVA_INPUT, sample_size=1000, show=SHOW_PLOTS, title="Java")
print('Mean:' + str(java_sample['Ratio'].mean()))
print('Variance:' + str(java_sample['Ratio'].var()))
print('\nStatistische Tests')
# Aufgabenbearbeitung ab hier
# Mann-Whitney-U-Test
stat, p_value = stats.mannwhitneyu(python_sample['Ratio'], java_sample['Ratio'], alternative='two-sided')
effect_size = cohen_d(python_sample['Ratio'], java_sample['Ratio'])
print(f"Globaler Durchschnitt Python: {python_sample.get('Ratio').mean()}")
print(f"Globaler Durchschnitt Java: {java_sample.get('Ratio').mean()}")
print(f"Mann-Whitney-Test: Statistik {stat}, P-Wert {p_value}")
print(f"Effektstärke (Cohen's d): {effect_size}")
# Experimentelle Bestimmung der Schranke
barrier = find_barrier(PYTHON_INPUT, JAVA_INPUT, alpha=0.01)
print(f"Untere Schranke, ab welcher der Test nicht signifikant ist: {barrier}")
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

9
boa/analysis/test.py Normal file
View File

@ -0,0 +1,9 @@
import random
random.seed(1)
print(random.randint(0, 10))
print(random.randint(0, 10))
print(random.randint(0, 10))
print(random.randint(0, 10))
print(random.randint(0, 10))
print(random.randint(0, 10))

View File

@ -1,5 +1,5 @@
# Java-Job: 111128 # Java-Job: 111694
# Python-Job: 111124 # Python-Job: 111439
# Includes all revisions # Includes all revisions
p: Project = input; p: Project = input;
@ -12,7 +12,7 @@ cur_date: time;
statement_counter := visitor { statement_counter := visitor {
before node: Statement -> { before node: Statement -> {
if(node.kind == StatementKind.TRY or node.kind == StatementKind.WITH) if (def(node.kind) and (node.kind == StatementKind.TRY or node.kind == StatementKind.WITH))
relative_list[p.name][yearof(cur_date)] << 1; relative_list[p.name][yearof(cur_date)] << 1;
else else
relative_list[p.name][yearof(cur_date)] << 0; relative_list[p.name][yearof(cur_date)] << 0;
@ -22,12 +22,11 @@ statement_counter := visitor {
visit(p, visitor { visit(p, visitor {
before node: CodeRepository -> { before node: CodeRepository -> {
for (minus_year: int=22; minus_year >= 0; minus_year--) { for (minus_year: int=22; minus_year >= 0; minus_year--) {
cur_date = addyear(now(), -minus_year); cur_date = addyear(T"Dec 31, 2022, 10:00:00 AM", -minus_year);
snapshot := getsnapshot(node, cur_date); snapshot := getsnapshot(node, cur_date);
if (def(snapshot)) foreach (i: int; def(snapshot[i]))
foreach (i: int; def(snapshot[i])) visit(snapshot[i], statement_counter);
visit(snapshot[i], statement_counter);
} }
} }
}); });