CLAUDE Here's a Python function to calculate Cohen's d: ```python import numpy as np def cohens_d(group1, group2): """ Calculate Cohen's d effect size between two groups. Parameters: group1 (array-like): First group of values group2 (array-like): Second group of values Returns: float: Cohen's d value """ # Convert to numpy arrays group1 = np.array(group1) group2 = np.array(group2) # Calculate means mean1 = np.mean(group1) mean2 = np.mean(group2) # Calculate pooled standard deviation n1, n2 = len(group1), len(group2) var1, var2 = np.var(group1, ddof=1), np.var(group2, ddof=1) pooled_sd = np.sqrt(((n1 - 1) * var1 + (n2 - 1) * var2) / (n1 + n2 - 2)) # Calculate Cohen's d d = (mean2 - mean1) / pooled_sd return d # Example usage # group1 = [1, 2, 3, 4, 5] # group2 = [3, 4, 5, 6, 7] # effect_size = cohens_d(group1, group2) ``` Key points: - Uses pooled standard deviation - Works with numpy arrays - Handles different group sizes - Returns effect size magnitude and direction Interpretation: - |d| < 0.2: Small effect - 0.2 ≤ |d| < 0.5: Medium effect - |d| ≥ 0.5: Large effect