DeepSeek Antwort ################################################################################################################## To address the problem of implementing and visualizing a red-black tree, we divide the solution into several steps: creating the `Node` class, implementing the red-black tree (`RedBlackTree`) with insertion and balancing operations, and visualizing the tree using Matplotlib. Each step is explained in detail, followed by the complete code. ### Step-by-Step Explanations 1. **Node Class**: - Represents each node in the tree with attributes for value, color, left/right children, and parent. - New nodes are initialized as red, with children pointing to a sentinel `NIL` node. 2. **RedBlackTree Class**: - Manages the tree structure, including insertion and balancing. - Uses a sentinel `NIL` node (black) to represent leaves. - Insertion follows BST rules, followed by fixing the tree to maintain red-black properties using rotations and recoloring. 3. **Tree Balancing (Insert Fix)**: - After inserting a node as red, fix violations of red-black properties. - Cases handled based on the uncle's color and node position (left/right child). 4. **Rotations**: - Left and right rotations adjust the tree structure to balance it after insertion. 5. **Visualization**: - Assigns coordinates to each node using a modified in-order traversal for horizontal placement and depth for vertical placement. - Uses Matplotlib to draw nodes (colored circles) and edges (lines between nodes). ### Solution Code ```python import matplotlib.pyplot as plt class Node: def __init__(self, value, color='red'): self.value = value self.color = color self.left = None self.right = None self.parent = None def __repr__(self): return f"Node({self.value}, {self.color})" class RedBlackTree: def __init__(self): self.NIL = Node(None, 'black') self.NIL.left = self.NIL self.NIL.right = self.NIL self.NIL.parent = self.NIL self.root = self.NIL def insert(self, value): new_node = Node(value) new_node.left = self.NIL new_node.right = self.NIL new_node.parent = self.NIL current = self.root parent = self.NIL while current != self.NIL: parent = current if new_node.value < current.value: current = current.left else: current = current.right new_node.parent = parent if parent == self.NIL: self.root = new_node elif new_node.value < parent.value: parent.left = new_node else: parent.right = new_node self.fix_insert(new_node) def fix_insert(self, node): while node.parent.color == 'red': if node.parent == node.parent.parent.left: uncle = node.parent.parent.right if uncle.color == 'red': node.parent.color = 'black' uncle.color = 'black' node.parent.parent.color = 'red' node = node.parent.parent else: if node == node.parent.right: node = node.parent self.left_rotate(node) node.parent.color = 'black' node.parent.parent.color = 'red' self.right_rotate(node.parent.parent) else: uncle = node.parent.parent.left if uncle.color == 'red': node.parent.color = 'black' uncle.color = 'black' node.parent.parent.color = 'red' node = node.parent.parent else: if node == node.parent.left: node = node.parent self.right_rotate(node) node.parent.color = 'black' node.parent.parent.color = 'red' self.left_rotate(node.parent.parent) if node == self.root: break self.root.color = 'black' def left_rotate(self, x): y = x.right x.right = y.left if y.left != self.NIL: y.left.parent = x y.parent = x.parent if x.parent == self.NIL: self.root = y elif x == x.parent.left: x.parent.left = y else: x.parent.right = y y.left = x x.parent = y def right_rotate(self, y): x = y.left y.left = x.right if x.right != self.NIL: x.right.parent = y x.parent = y.parent if y.parent == self.NIL: self.root = x elif y == y.parent.right: y.parent.right = x else: y.parent.left = x x.right = y y.parent = x def _assign_positions(self, node, pos_map, x=0, depth=0): if node == self.NIL: return x x = self._assign_positions(node.left, pos_map, x, depth + 1) pos_map[node] = (x, depth) x += 1 x = self._assign_positions(node.right, pos_map, x, depth + 1) return x def visualize(self): pos_map = {} self._assign_positions(self.root, pos_map) if not pos_map: print("Tree is empty.") return fig, ax = plt.subplots() max_x = max(x for x, _ in pos_map.values()) max_depth = max(d for _, d in pos_map.values()) h_spacing = 1.0 v_spacing = 1.0 for node in pos_map: x, depth = pos_map[node] scaled_x = x * h_spacing scaled_y = -depth * v_spacing if node.left != self.NIL: l_x, l_depth = pos_map[node.left] ax.plot([scaled_x, l_x * h_spacing], [scaled_y, -l_depth * v_spacing], 'k-', linewidth=1) if node.right != self.NIL: r_x, r_depth = pos_map[node.right] ax.plot([scaled_x, r_x * h_spacing], [scaled_y, -r_depth * v_spacing], 'k-', linewidth=1) color = 'red' if node.color == 'red' else 'black' circle = plt.Circle((scaled_x, scaled_y), 0.3, color=color, ec='k') ax.add_patch(circle) text_color = 'white' if node.color == 'black' else 'black' plt.text(scaled_x, scaled_y, str(node.value), color=text_color, ha='center', va='center', fontsize=10) ax.set_xlim(-h_spacing, (max_x + 1) * h_spacing) ax.set_ylim(-(max_depth + 1) * v_spacing, v_spacing) ax.set_aspect('equal') ax.axis('off') plt.show() ``` ### Explanation and Assumptions - **Node Class**: Stores value, color, and references to left/right children and parent. The default color for new nodes is red. - **RedBlackTree Class**: Manages tree operations. Uses a sentinel `NIL` node to represent leaves (all black). - **Insertion and Balancing**: After BST insertion, the tree is rebalanced using rotations and recoloring based on the uncle node's color and position. - **Visualization**: Nodes are positioned using in-order traversal to determine horizontal placement and depth for vertical placement. Nodes are drawn as circles with their values, colored according to red-black properties. ### Limitations and Ambiguities - **Visualization**: The in-order traversal-based positioning might not perfectly center parent nodes over their children, especially in unbalanced trees. This can lead to overlapping or misaligned nodes in complex structures. - **Functionality**: The implementation does not handle node deletion, which is more complex and requires additional balancing logic. - **Edge Cases**: The code assumes unique values; inserting duplicates may lead to incorrect behavior. - **Performance**: The visualization may not scale efficiently for very large trees due to the simple positioning algorithm. This solution provides a foundational implementation of a red-black tree with visualization, suitable for educational purposes and moderate-sized trees.