Softwaretechnik-II/llm/cohens-output/claude.txt
Jan-Niclas Loosen ce17502029 add llm chapter
2025-01-30 11:12:08 +01:00

54 lines
1.2 KiB
Plaintext

CLAUDE
Here's a Python function to calculate Cohen's d:
```python
import numpy as np
def cohens_d(group1, group2):
"""
Calculate Cohen's d effect size between two groups.
Parameters:
group1 (array-like): First group of values
group2 (array-like): Second group of values
Returns:
float: Cohen's d value
"""
# Convert to numpy arrays
group1 = np.array(group1)
group2 = np.array(group2)
# Calculate means
mean1 = np.mean(group1)
mean2 = np.mean(group2)
# Calculate pooled standard deviation
n1, n2 = len(group1), len(group2)
var1, var2 = np.var(group1, ddof=1), np.var(group2, ddof=1)
pooled_sd = np.sqrt(((n1 - 1) * var1 + (n2 - 1) * var2) / (n1 + n2 - 2))
# Calculate Cohen's d
d = (mean2 - mean1) / pooled_sd
return d
# Example usage
# group1 = [1, 2, 3, 4, 5]
# group2 = [3, 4, 5, 6, 7]
# effect_size = cohens_d(group1, group2)
```
Key points:
- Uses pooled standard deviation
- Works with numpy arrays
- Handles different group sizes
- Returns effect size magnitude and direction
Interpretation:
- |d| < 0.2: Small effect
- 0.2 ≤ |d| < 0.5: Medium effect
- |d| ≥ 0.5: Large effect