Refactor cfg_build.py
This commit is contained in:
Binary file not shown.
|
Before Width: | Height: | Size: 150 KiB After Width: | Height: | Size: 66 KiB |
@@ -14,159 +14,202 @@ import syntax
|
||||
FUNCTIONS = {}
|
||||
|
||||
class CONST(compiler.CONST):
|
||||
def cfa(self, pred, end):
|
||||
n = CFG_Node(self)
|
||||
pred.add_child(n)
|
||||
n.add_child(end) if end else None
|
||||
return n
|
||||
def cfa(self, pred, end = None):
|
||||
node = CFG_Node(self)
|
||||
pred.add_child(node)
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
node.add_child(end)
|
||||
return node
|
||||
|
||||
class ID(compiler.ID):
|
||||
def cfa(self, pred, end):
|
||||
n = CFG_Node(self)
|
||||
pred.add_child(n)
|
||||
n.add_child(end) if end else None
|
||||
return n
|
||||
def cfa(self, pred, end = None):
|
||||
node = CFG_Node(self)
|
||||
pred.add_child(node)
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
node.add_child(end)
|
||||
return node
|
||||
|
||||
class AOP(compiler.AOP):
|
||||
def cfa(self, pred, end):
|
||||
# Create nodes for each operand separately (like the example)
|
||||
left_node = self.arg1.cfa(pred, None)
|
||||
right_node = self.arg2.cfa(left_node, None)
|
||||
def cfa(self, pred, end = None):
|
||||
# Create nodes for the used expressions and attach
|
||||
left_node = self.arg1.cfa(pred)
|
||||
right_node = self.arg2.cfa(left_node)
|
||||
|
||||
# Create the comparison node with just the operator
|
||||
# Create the operator node and attach
|
||||
op_node = CFG_Node(self)
|
||||
op_node.label = f"{self.operator}"
|
||||
op_node.label = f"{str(self.arg1)} {self.operator} {str(self.arg2)}"
|
||||
right_node.add_child(op_node)
|
||||
op_node.add_child(end) if end else None
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
op_node.add_child(end)
|
||||
return op_node
|
||||
|
||||
class COMP(compiler.COMP):
|
||||
def cfa(self, pred, end):
|
||||
# Create nodes for each operand separately (like the example)
|
||||
left_node = self.arg1.cfa(pred, None)
|
||||
right_node = self.arg2.cfa(left_node, None)
|
||||
def cfa(self, pred, end = None):
|
||||
# Create nodes for the used expressions and attach
|
||||
left_node = self.arg1.cfa(pred)
|
||||
right_node = self.arg2.cfa(left_node)
|
||||
|
||||
# Create the comparison node with just the operator
|
||||
# Create the comparison node and attach
|
||||
comp_node = CFG_Node(self)
|
||||
comp_node.label = f"{self.operator}"
|
||||
comp_node.label = f"{str(self.arg1)} {self.operator} {str(self.arg2)}"
|
||||
right_node.add_child(comp_node)
|
||||
comp_node.add_child(end) if end else None
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
comp_node.add_child(end)
|
||||
return comp_node
|
||||
|
||||
class EQOP(compiler.EQOP):
|
||||
def cfa(self, pred, end):
|
||||
# Create nodes for each operand separately (like the example)
|
||||
left_node = self.arg1.cfa(pred, None)
|
||||
right_node = self.arg2.cfa(left_node, None)
|
||||
def cfa(self, pred, end = None):
|
||||
# Create nodes for the used expressions and attach
|
||||
left_node = self.arg1.cfa(pred)
|
||||
right_node = self.arg2.cfa(left_node)
|
||||
|
||||
# Create the equation node with just the operator
|
||||
# Create the comparison node and attach
|
||||
eqop_node = CFG_Node(self)
|
||||
eqop_node.label = f"{self.operator}"
|
||||
eqop_node.label = f"{str(self.arg1)} {self.operator} {str(self.arg2)}"
|
||||
right_node.add_child(eqop_node)
|
||||
eqop_node.add_child(end) if end else None
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
eqop_node.add_child(end)
|
||||
return eqop_node
|
||||
|
||||
class LOP(compiler.LOP):
|
||||
def cfa(self, pred, end):
|
||||
def cfa(self, pred, end = None):
|
||||
# Create nodes for each operand separately
|
||||
left_node = self.arg1.cfa(pred, None)
|
||||
right_node = self.arg2.cfa(left_node, None)
|
||||
left_node = self.arg1.cfa(pred)
|
||||
right_node = self.arg2.cfa(left_node)
|
||||
|
||||
# Create the logical operation node with just the operator
|
||||
lop_node = CFG_Node(self)
|
||||
lop_node.label = f"{self.operator}"
|
||||
lop_node.label = f"{str(self.arg1)} {self.operator} {str(self.arg2)}"
|
||||
right_node.add_child(lop_node)
|
||||
lop_node.add_child(end) if end else None
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
lop_node.add_child(end)
|
||||
return lop_node
|
||||
|
||||
class ASSIGN(compiler.ASSIGN):
|
||||
def cfa(self, pred, end):
|
||||
expr_node = self.expr.cfa(pred, None)
|
||||
def cfa(self, pred, end = None):
|
||||
# Unwraps expressions needed for assignment
|
||||
expr_node = self.expr.cfa(pred)
|
||||
|
||||
# Assignment node
|
||||
assign_node = CFG_Node(self)
|
||||
expr_node.add_child(assign_node)
|
||||
assign_node.add_child(end) if end else None
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
assign_node.add_child(end)
|
||||
return assign_node
|
||||
|
||||
class SEQ(compiler.SEQ):
|
||||
def cfa(self, pred, end):
|
||||
mid = self.exp1.cfa(pred, None)
|
||||
def cfa(self, pred, end = None):
|
||||
mid = self.exp1.cfa(pred)
|
||||
if mid is None:
|
||||
return None
|
||||
return self.exp2.cfa(mid, end)
|
||||
|
||||
class IF(compiler.IF):
|
||||
def cfa(self, pred, end):
|
||||
def cfa(self, pred, end = None):
|
||||
# Unwraps expressions needed for the condition
|
||||
cond_node = self.cond.cfa(pred, None)
|
||||
|
||||
# Attach junction node
|
||||
diamond = CFG_DIAMOND(self.cond)
|
||||
diamond.label = "<?>" # Use simple diamond label
|
||||
diamond.label = "<?>"
|
||||
cond_node.add_child(diamond)
|
||||
|
||||
# Define start and end entry and unwraps expressions
|
||||
then_entry = CFG_Node()
|
||||
else_entry = CFG_Node()
|
||||
diamond.add_child(then_entry)
|
||||
else_entry = CFG_Node()
|
||||
diamond.add_child(else_entry)
|
||||
|
||||
# Attach the end node if it is provided
|
||||
join = CFG_Node()
|
||||
join.add_child(end) if end else None
|
||||
if end is not None:
|
||||
join.add_child(end)
|
||||
|
||||
# Connect the extracted expressions with the join
|
||||
then_end = self.exp1.cfa(then_entry, join)
|
||||
else_end = self.exp2.cfa(else_entry, join)
|
||||
return join
|
||||
|
||||
class WHILE(compiler.WHILE):
|
||||
def cfa(self, pred, end):
|
||||
# Handle different types of conditions
|
||||
def cfa(self, pred, end = None):
|
||||
if hasattr(self.cond, 'arg1') and hasattr(self.cond, 'arg2'):
|
||||
# This is a comparison operation (e.g., a > b)
|
||||
|
||||
# Create the condition evaluation nodes
|
||||
left_node = self.cond.arg1.cfa(pred, None)
|
||||
right_node = self.cond.arg2.cfa(left_node, None)
|
||||
left_node = self.cond.arg1.cfa(pred)
|
||||
right_node = self.cond.arg2.cfa(left_node)
|
||||
|
||||
# Create the comparison node and attach
|
||||
comp_node = CFG_Node(self.cond)
|
||||
comp_node.label = f"({str(self.cond.arg1)} {self.cond.operator} {str(self.cond.arg2)})"
|
||||
comp_node.label = f"{str(self.cond.arg1)} {self.cond.operator} {str(self.cond.arg2)}"
|
||||
right_node.add_child(comp_node)
|
||||
else:
|
||||
# This is a simple condition (e.g., constant true/false or single expression)
|
||||
cond_node = self.cond.cfa(pred, None)
|
||||
# This is a simple condition (e.g., constant true/false)
|
||||
cond_node = self.cond.cfa(pred)
|
||||
comp_node = cond_node
|
||||
|
||||
# Create the diamond node
|
||||
# Attach junction node
|
||||
diamond = CFG_DIAMOND(self.cond)
|
||||
diamond.label = "<>" # Use simple diamond label
|
||||
diamond.label = "<?>"
|
||||
comp_node.add_child(diamond)
|
||||
|
||||
# For the true branch, go to body
|
||||
# Unwrap the loop body
|
||||
body_entry = CFG_Node()
|
||||
diamond.add_child(body_entry)
|
||||
|
||||
# The body should connect back to the start of condition evaluation
|
||||
body_end = self.body.cfa(body_entry, None)
|
||||
body_end = self.body.cfa(body_entry)
|
||||
if body_end is not None:
|
||||
# Connect body end back to the condition evaluation
|
||||
# Connect the body end back to the condition evaluation
|
||||
if hasattr(self.cond, 'arg1') and hasattr(self.cond, 'arg2'):
|
||||
body_end.add_child(left_node)
|
||||
else:
|
||||
body_end.add_child(pred) # For simple conditions, go back to start
|
||||
|
||||
body_end.add_child(pred)
|
||||
|
||||
# Attach joining node
|
||||
after = CFG_Node()
|
||||
diamond.add_child(after)
|
||||
after.add_child(end) if end else None
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
after.add_child(end)
|
||||
return after
|
||||
|
||||
class CALL(compiler.CALL):
|
||||
def cfa(self, pred, end):
|
||||
def cfa(self, pred, end = None):
|
||||
# Create nodes for all argument values
|
||||
current_arg_node = pred
|
||||
for i, arg in enumerate(self.arg):
|
||||
# Process argument through its cfa method to create proper CFG structure
|
||||
current_arg_node = arg.cfa(current_arg_node, None)
|
||||
|
||||
current_arg_node = arg.cfa(current_arg_node)
|
||||
|
||||
# Create and attach the call node
|
||||
call_node = CFG_CALL(self)
|
||||
call_node.label = f"CALL {self.f_name}"
|
||||
current_arg_node.add_child(call_node)
|
||||
|
||||
# Create and attach the exit node
|
||||
cont = CFG_Node()
|
||||
cont.add_child(end) if end else None
|
||||
if end is not None:
|
||||
cont.add_child(end)
|
||||
|
||||
# Find the functions in the function list
|
||||
if self.f_name not in FUNCTIONS:
|
||||
raise RuntimeError(f"Call to undefined function '{self.f_name}'")
|
||||
|
||||
# Determine start and exit node of the function
|
||||
f_start, f_end = FUNCTIONS[self.f_name]
|
||||
|
||||
# Create return node from function
|
||||
@@ -175,10 +218,11 @@ class CALL(compiler.CALL):
|
||||
f_end.add_child(return_node)
|
||||
return_node.add_child(cont)
|
||||
|
||||
# Span the start and exit nodes to the method body
|
||||
call_node.add_child(f_start)
|
||||
# Add direct edge from CALL to RET node (for the expected structure)
|
||||
call_node.add_child(return_node)
|
||||
|
||||
|
||||
# TODO: Why only g? Also f can be recursive.
|
||||
# For recursive calls, we need to ensure proper return value flow
|
||||
# In expressions like g(x)+x, the return value from g(x) flows to the continuation
|
||||
# This is especially important for recursive functions where multiple calls return values
|
||||
@@ -192,23 +236,27 @@ class CALL(compiler.CALL):
|
||||
|
||||
class DECL(compiler.DECL):
|
||||
def cfa(self, pred, end):
|
||||
# Check if function is already registered (from first pass in LET)
|
||||
# Check if a function is already registered
|
||||
if self.f_name in FUNCTIONS:
|
||||
f_start, f_end = FUNCTIONS[self.f_name]
|
||||
else:
|
||||
# Span the method body into a start and end node
|
||||
f_start = CFG_START(self)
|
||||
f_start.label = f"START {self.f_name}({', '.join(self.params)})"
|
||||
f_end = CFG_END(self)
|
||||
f_end.label = f"END {self.f_name}({', '.join(self.params)})"
|
||||
FUNCTIONS[self.f_name] = (f_start, f_end)
|
||||
|
||||
|
||||
# Unwrap the method body
|
||||
body_end = self.body.cfa(f_start, f_end)
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if body_end is not None:
|
||||
body_end.add_child(f_end)
|
||||
return pred
|
||||
|
||||
class LET(compiler.LET):
|
||||
def cfa(self, pred, end):
|
||||
def cfa(self, pred, end = None):
|
||||
# First pass: Register all function declarations
|
||||
decls = self.decl if isinstance(self.decl, list) else [self.decl]
|
||||
for d in decls:
|
||||
@@ -220,20 +268,19 @@ class LET(compiler.LET):
|
||||
f_end.label = f"END {d.f_name}({', '.join(d.params)})"
|
||||
FUNCTIONS[d.f_name] = (f_start, f_end)
|
||||
|
||||
# Create global entry node
|
||||
# Create a global entry node for the function
|
||||
global_entry = CFG_Node()
|
||||
global_entry.label = "None"
|
||||
pred.add_child(global_entry)
|
||||
|
||||
current = global_entry
|
||||
|
||||
# Second pass: Process declarations and build CFGs
|
||||
# Generate function declarations
|
||||
for d in decls:
|
||||
current = d.cfa(current, None)
|
||||
if current is None:
|
||||
return None
|
||||
|
||||
# Process the body (function call)
|
||||
# Unwrap the body
|
||||
body_result = self.body.cfa(current, end)
|
||||
|
||||
# Create global exit node
|
||||
@@ -241,9 +288,10 @@ class LET(compiler.LET):
|
||||
global_exit.label = "None"
|
||||
if body_result is not None:
|
||||
body_result.add_child(global_exit)
|
||||
|
||||
# Attach the end node if it is provided
|
||||
if end is not None:
|
||||
global_exit.add_child(end)
|
||||
|
||||
return global_exit
|
||||
|
||||
class RETURN(syntax.EXPRESSION):
|
||||
|
||||
@@ -35,7 +35,6 @@ def make_cfg(ast):
|
||||
|
||||
return CFG(start, end)
|
||||
|
||||
|
||||
# Renders a diagram of the AST
|
||||
def render_diagram(dot_string: str):
|
||||
# Set DPI for PNG
|
||||
|
||||
Reference in New Issue
Block a user