finish llm homework
This commit is contained in:
202
llm/generation-output/deepseek.txt
Normal file
202
llm/generation-output/deepseek.txt
Normal file
@@ -0,0 +1,202 @@
|
||||
DeepSeek Antwort
|
||||
##################################################################################################################
|
||||
|
||||
To address the problem of implementing and visualizing a red-black tree, we divide the solution into several steps: creating the `Node` class, implementing the red-black tree (`RedBlackTree`) with insertion and balancing operations, and visualizing the tree using Matplotlib. Each step is explained in detail, followed by the complete code.
|
||||
|
||||
### Step-by-Step Explanations
|
||||
|
||||
1. **Node Class**:
|
||||
- Represents each node in the tree with attributes for value, color, left/right children, and parent.
|
||||
- New nodes are initialized as red, with children pointing to a sentinel `NIL` node.
|
||||
|
||||
2. **RedBlackTree Class**:
|
||||
- Manages the tree structure, including insertion and balancing.
|
||||
- Uses a sentinel `NIL` node (black) to represent leaves.
|
||||
- Insertion follows BST rules, followed by fixing the tree to maintain red-black properties using rotations and recoloring.
|
||||
|
||||
3. **Tree Balancing (Insert Fix)**:
|
||||
- After inserting a node as red, fix violations of red-black properties.
|
||||
- Cases handled based on the uncle's color and node position (left/right child).
|
||||
|
||||
4. **Rotations**:
|
||||
- Left and right rotations adjust the tree structure to balance it after insertion.
|
||||
|
||||
5. **Visualization**:
|
||||
- Assigns coordinates to each node using a modified in-order traversal for horizontal placement and depth for vertical placement.
|
||||
- Uses Matplotlib to draw nodes (colored circles) and edges (lines between nodes).
|
||||
|
||||
### Solution Code
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class Node:
|
||||
def __init__(self, value, color='red'):
|
||||
self.value = value
|
||||
self.color = color
|
||||
self.left = None
|
||||
self.right = None
|
||||
self.parent = None
|
||||
|
||||
def __repr__(self):
|
||||
return f"Node({self.value}, {self.color})"
|
||||
|
||||
class RedBlackTree:
|
||||
def __init__(self):
|
||||
self.NIL = Node(None, 'black')
|
||||
self.NIL.left = self.NIL
|
||||
self.NIL.right = self.NIL
|
||||
self.NIL.parent = self.NIL
|
||||
self.root = self.NIL
|
||||
|
||||
def insert(self, value):
|
||||
new_node = Node(value)
|
||||
new_node.left = self.NIL
|
||||
new_node.right = self.NIL
|
||||
new_node.parent = self.NIL
|
||||
|
||||
current = self.root
|
||||
parent = self.NIL
|
||||
while current != self.NIL:
|
||||
parent = current
|
||||
if new_node.value < current.value:
|
||||
current = current.left
|
||||
else:
|
||||
current = current.right
|
||||
new_node.parent = parent
|
||||
if parent == self.NIL:
|
||||
self.root = new_node
|
||||
elif new_node.value < parent.value:
|
||||
parent.left = new_node
|
||||
else:
|
||||
parent.right = new_node
|
||||
|
||||
self.fix_insert(new_node)
|
||||
|
||||
def fix_insert(self, node):
|
||||
while node.parent.color == 'red':
|
||||
if node.parent == node.parent.parent.left:
|
||||
uncle = node.parent.parent.right
|
||||
if uncle.color == 'red':
|
||||
node.parent.color = 'black'
|
||||
uncle.color = 'black'
|
||||
node.parent.parent.color = 'red'
|
||||
node = node.parent.parent
|
||||
else:
|
||||
if node == node.parent.right:
|
||||
node = node.parent
|
||||
self.left_rotate(node)
|
||||
node.parent.color = 'black'
|
||||
node.parent.parent.color = 'red'
|
||||
self.right_rotate(node.parent.parent)
|
||||
else:
|
||||
uncle = node.parent.parent.left
|
||||
if uncle.color == 'red':
|
||||
node.parent.color = 'black'
|
||||
uncle.color = 'black'
|
||||
node.parent.parent.color = 'red'
|
||||
node = node.parent.parent
|
||||
else:
|
||||
if node == node.parent.left:
|
||||
node = node.parent
|
||||
self.right_rotate(node)
|
||||
node.parent.color = 'black'
|
||||
node.parent.parent.color = 'red'
|
||||
self.left_rotate(node.parent.parent)
|
||||
if node == self.root:
|
||||
break
|
||||
self.root.color = 'black'
|
||||
|
||||
def left_rotate(self, x):
|
||||
y = x.right
|
||||
x.right = y.left
|
||||
if y.left != self.NIL:
|
||||
y.left.parent = x
|
||||
y.parent = x.parent
|
||||
if x.parent == self.NIL:
|
||||
self.root = y
|
||||
elif x == x.parent.left:
|
||||
x.parent.left = y
|
||||
else:
|
||||
x.parent.right = y
|
||||
y.left = x
|
||||
x.parent = y
|
||||
|
||||
def right_rotate(self, y):
|
||||
x = y.left
|
||||
y.left = x.right
|
||||
if x.right != self.NIL:
|
||||
x.right.parent = y
|
||||
x.parent = y.parent
|
||||
if y.parent == self.NIL:
|
||||
self.root = x
|
||||
elif y == y.parent.right:
|
||||
y.parent.right = x
|
||||
else:
|
||||
y.parent.left = x
|
||||
x.right = y
|
||||
y.parent = x
|
||||
|
||||
def _assign_positions(self, node, pos_map, x=0, depth=0):
|
||||
if node == self.NIL:
|
||||
return x
|
||||
x = self._assign_positions(node.left, pos_map, x, depth + 1)
|
||||
pos_map[node] = (x, depth)
|
||||
x += 1
|
||||
x = self._assign_positions(node.right, pos_map, x, depth + 1)
|
||||
return x
|
||||
|
||||
def visualize(self):
|
||||
pos_map = {}
|
||||
self._assign_positions(self.root, pos_map)
|
||||
if not pos_map:
|
||||
print("Tree is empty.")
|
||||
return
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
max_x = max(x for x, _ in pos_map.values())
|
||||
max_depth = max(d for _, d in pos_map.values())
|
||||
|
||||
h_spacing = 1.0
|
||||
v_spacing = 1.0
|
||||
|
||||
for node in pos_map:
|
||||
x, depth = pos_map[node]
|
||||
scaled_x = x * h_spacing
|
||||
scaled_y = -depth * v_spacing
|
||||
|
||||
if node.left != self.NIL:
|
||||
l_x, l_depth = pos_map[node.left]
|
||||
ax.plot([scaled_x, l_x * h_spacing], [scaled_y, -l_depth * v_spacing], 'k-', linewidth=1)
|
||||
if node.right != self.NIL:
|
||||
r_x, r_depth = pos_map[node.right]
|
||||
ax.plot([scaled_x, r_x * h_spacing], [scaled_y, -r_depth * v_spacing], 'k-', linewidth=1)
|
||||
|
||||
color = 'red' if node.color == 'red' else 'black'
|
||||
circle = plt.Circle((scaled_x, scaled_y), 0.3, color=color, ec='k')
|
||||
ax.add_patch(circle)
|
||||
text_color = 'white' if node.color == 'black' else 'black'
|
||||
plt.text(scaled_x, scaled_y, str(node.value), color=text_color, ha='center', va='center', fontsize=10)
|
||||
|
||||
ax.set_xlim(-h_spacing, (max_x + 1) * h_spacing)
|
||||
ax.set_ylim(-(max_depth + 1) * v_spacing, v_spacing)
|
||||
ax.set_aspect('equal')
|
||||
ax.axis('off')
|
||||
plt.show()
|
||||
```
|
||||
|
||||
### Explanation and Assumptions
|
||||
|
||||
- **Node Class**: Stores value, color, and references to left/right children and parent. The default color for new nodes is red.
|
||||
- **RedBlackTree Class**: Manages tree operations. Uses a sentinel `NIL` node to represent leaves (all black).
|
||||
- **Insertion and Balancing**: After BST insertion, the tree is rebalanced using rotations and recoloring based on the uncle node's color and position.
|
||||
- **Visualization**: Nodes are positioned using in-order traversal to determine horizontal placement and depth for vertical placement. Nodes are drawn as circles with their values, colored according to red-black properties.
|
||||
|
||||
### Limitations and Ambiguities
|
||||
|
||||
- **Visualization**: The in-order traversal-based positioning might not perfectly center parent nodes over their children, especially in unbalanced trees. This can lead to overlapping or misaligned nodes in complex structures.
|
||||
- **Functionality**: The implementation does not handle node deletion, which is more complex and requires additional balancing logic.
|
||||
- **Edge Cases**: The code assumes unique values; inserting duplicates may lead to incorrect behavior.
|
||||
- **Performance**: The visualization may not scale efficiently for very large trees due to the simple positioning algorithm.
|
||||
|
||||
This solution provides a foundational implementation of a red-black tree with visualization, suitable for educational purposes and moderate-sized trees.
|
Reference in New Issue
Block a user