Softwaretechnik-II/llm/generation-output/deepseek.txt
2025-02-10 18:15:43 +01:00

203 lines
8.0 KiB
Plaintext

DeepSeek Antwort
##################################################################################################################
To address the problem of implementing and visualizing a red-black tree, we divide the solution into several steps: creating the `Node` class, implementing the red-black tree (`RedBlackTree`) with insertion and balancing operations, and visualizing the tree using Matplotlib. Each step is explained in detail, followed by the complete code.
### Step-by-Step Explanations
1. **Node Class**:
- Represents each node in the tree with attributes for value, color, left/right children, and parent.
- New nodes are initialized as red, with children pointing to a sentinel `NIL` node.
2. **RedBlackTree Class**:
- Manages the tree structure, including insertion and balancing.
- Uses a sentinel `NIL` node (black) to represent leaves.
- Insertion follows BST rules, followed by fixing the tree to maintain red-black properties using rotations and recoloring.
3. **Tree Balancing (Insert Fix)**:
- After inserting a node as red, fix violations of red-black properties.
- Cases handled based on the uncle's color and node position (left/right child).
4. **Rotations**:
- Left and right rotations adjust the tree structure to balance it after insertion.
5. **Visualization**:
- Assigns coordinates to each node using a modified in-order traversal for horizontal placement and depth for vertical placement.
- Uses Matplotlib to draw nodes (colored circles) and edges (lines between nodes).
### Solution Code
```python
import matplotlib.pyplot as plt
class Node:
def __init__(self, value, color='red'):
self.value = value
self.color = color
self.left = None
self.right = None
self.parent = None
def __repr__(self):
return f"Node({self.value}, {self.color})"
class RedBlackTree:
def __init__(self):
self.NIL = Node(None, 'black')
self.NIL.left = self.NIL
self.NIL.right = self.NIL
self.NIL.parent = self.NIL
self.root = self.NIL
def insert(self, value):
new_node = Node(value)
new_node.left = self.NIL
new_node.right = self.NIL
new_node.parent = self.NIL
current = self.root
parent = self.NIL
while current != self.NIL:
parent = current
if new_node.value < current.value:
current = current.left
else:
current = current.right
new_node.parent = parent
if parent == self.NIL:
self.root = new_node
elif new_node.value < parent.value:
parent.left = new_node
else:
parent.right = new_node
self.fix_insert(new_node)
def fix_insert(self, node):
while node.parent.color == 'red':
if node.parent == node.parent.parent.left:
uncle = node.parent.parent.right
if uncle.color == 'red':
node.parent.color = 'black'
uncle.color = 'black'
node.parent.parent.color = 'red'
node = node.parent.parent
else:
if node == node.parent.right:
node = node.parent
self.left_rotate(node)
node.parent.color = 'black'
node.parent.parent.color = 'red'
self.right_rotate(node.parent.parent)
else:
uncle = node.parent.parent.left
if uncle.color == 'red':
node.parent.color = 'black'
uncle.color = 'black'
node.parent.parent.color = 'red'
node = node.parent.parent
else:
if node == node.parent.left:
node = node.parent
self.right_rotate(node)
node.parent.color = 'black'
node.parent.parent.color = 'red'
self.left_rotate(node.parent.parent)
if node == self.root:
break
self.root.color = 'black'
def left_rotate(self, x):
y = x.right
x.right = y.left
if y.left != self.NIL:
y.left.parent = x
y.parent = x.parent
if x.parent == self.NIL:
self.root = y
elif x == x.parent.left:
x.parent.left = y
else:
x.parent.right = y
y.left = x
x.parent = y
def right_rotate(self, y):
x = y.left
y.left = x.right
if x.right != self.NIL:
x.right.parent = y
x.parent = y.parent
if y.parent == self.NIL:
self.root = x
elif y == y.parent.right:
y.parent.right = x
else:
y.parent.left = x
x.right = y
y.parent = x
def _assign_positions(self, node, pos_map, x=0, depth=0):
if node == self.NIL:
return x
x = self._assign_positions(node.left, pos_map, x, depth + 1)
pos_map[node] = (x, depth)
x += 1
x = self._assign_positions(node.right, pos_map, x, depth + 1)
return x
def visualize(self):
pos_map = {}
self._assign_positions(self.root, pos_map)
if not pos_map:
print("Tree is empty.")
return
fig, ax = plt.subplots()
max_x = max(x for x, _ in pos_map.values())
max_depth = max(d for _, d in pos_map.values())
h_spacing = 1.0
v_spacing = 1.0
for node in pos_map:
x, depth = pos_map[node]
scaled_x = x * h_spacing
scaled_y = -depth * v_spacing
if node.left != self.NIL:
l_x, l_depth = pos_map[node.left]
ax.plot([scaled_x, l_x * h_spacing], [scaled_y, -l_depth * v_spacing], 'k-', linewidth=1)
if node.right != self.NIL:
r_x, r_depth = pos_map[node.right]
ax.plot([scaled_x, r_x * h_spacing], [scaled_y, -r_depth * v_spacing], 'k-', linewidth=1)
color = 'red' if node.color == 'red' else 'black'
circle = plt.Circle((scaled_x, scaled_y), 0.3, color=color, ec='k')
ax.add_patch(circle)
text_color = 'white' if node.color == 'black' else 'black'
plt.text(scaled_x, scaled_y, str(node.value), color=text_color, ha='center', va='center', fontsize=10)
ax.set_xlim(-h_spacing, (max_x + 1) * h_spacing)
ax.set_ylim(-(max_depth + 1) * v_spacing, v_spacing)
ax.set_aspect('equal')
ax.axis('off')
plt.show()
```
### Explanation and Assumptions
- **Node Class**: Stores value, color, and references to left/right children and parent. The default color for new nodes is red.
- **RedBlackTree Class**: Manages tree operations. Uses a sentinel `NIL` node to represent leaves (all black).
- **Insertion and Balancing**: After BST insertion, the tree is rebalanced using rotations and recoloring based on the uncle node's color and position.
- **Visualization**: Nodes are positioned using in-order traversal to determine horizontal placement and depth for vertical placement. Nodes are drawn as circles with their values, colored according to red-black properties.
### Limitations and Ambiguities
- **Visualization**: The in-order traversal-based positioning might not perfectly center parent nodes over their children, especially in unbalanced trees. This can lead to overlapping or misaligned nodes in complex structures.
- **Functionality**: The implementation does not handle node deletion, which is more complex and requires additional balancing logic.
- **Edge Cases**: The code assumes unique values; inserting duplicates may lead to incorrect behavior.
- **Performance**: The visualization may not scale efficiently for very large trees due to the simple positioning algorithm.
This solution provides a foundational implementation of a red-black tree with visualization, suitable for educational purposes and moderate-sized trees.